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1. Introduction 
 
At, in, or near retirement, investors need to make specific decisions about how they are going to 
use their savings to generate income during retirement. These decisions include deciding how much 
to invest in annuities, how to invest non-annuitized assets, and how much to withdraw from the 
non-annuitized assets each year. Retired investors face the risk of running out of assets while they 
still need the income. Since the income needs usually remain until death, this risk is often called 
“longevity risk.” Furthermore, many investors wish to leave some portion of their retirement 
accounts as part of their estates. 
 
Retirement income management is choosing a combination of annuity, withdrawal, and investment 
strategies such that it is unlikely that the investor will run out of money before death while achieving 
the investor’s financial goals. In making these decisions, the investor must manage both market risk 
and longevity risk. 
 
In this paper, we explore retirement income solutions in a simple setting to illustrate the trade-offs 
that retired investors face regarding how much income they can generate, how much short-term 
risk they are exposed to, how large an estate they can expect to leave, and how likely they are to 
not run out of assets before dying (the “success” probability). We assume that at the beginning of 
the retirement period, the investor chooses how much annual income to generate (in real dollars), 
how much to invest in single premium immediate annuities, and what asset mix to use to manage 
non-annuitized assets. 
 
We use a Monte Carlo simulation approach to solve the model for the probability of not running out 
of money before death with various combinations of real income, annuitization, and asset allocation. 
Our approach differs from many other simulation models in the way that we treat the level of 
income to generate. The usual approach is to fix the income level and solve for the probability of 
running out of money. In our approach, rather than picking an income level rate a priori, we find the 
trade-off curve between the income level and success probability. We then compare the trade-off 
curves across different combinations of annuitization and asset mixes to see how the choice of 
income level affects the highest achievable success probability and the combination of annuitization 
and asset mix needed to achieve that success probability. 
 
The type of annuity that we explore pays a fixed nominal amount of money each year to the owner 
until death; so inflation causes the real value of the annuity payout to change over time. Hence, we 
need to include a model of inflation in our analysis. We construct three different inflation models, all 
with the same expected inflation rate, and find the relationship between the real income goal and 
the highest achievable success probability under each model. Our analysis shows that how we 
choose to model the inflation process can have a substantial impact on this relationship and on 
optimal investment and annuitization decisions. 
 
Success probability may not be the only criterion for selecting a withdrawal and investment 
strategy. Potential future wealth, which becomes the estate value at death, may also be a criterion. 
So for a given income level, we also calculate median estate values as well as the success 
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probability for various combinations of annuitization and asset mixes to find the trade-off between 
success probability and potential estate size under one of our inflation models. 
 
The remainder of this paper is organized as follows: Section 2 reviews the basic withdrawal model 
that is commonly used to address the issues of retirement income management with simulation in 
which the income level is a given. This provides the background for the literature review in Section 
3. Section 4 presents our basic model without annuities in which we find the trade-off curves 
between the income level and the probability of not running out of money before death. Section 5 
presents the three inflation models. Section 6 introduces annuities into our model and shows the 
impact of annuitization on the trade-off between income and success probability under each of the 
inflation models. It also shows the trade-off between success probability and potential estate size 
for a given income level under one of the inflation models. Section 7 discusses extensions to the 
model. Section 8 summarizes our approach and findings. 
 
 
2. The Simulation Approach to Withdrawal Models 
 
The typical approach to analyzing the problem of generating retirement income from a pool of 
invested assets is to run a series of simulations either by using historical return data or simulating 
returns with a parametric model.1 Figure 1 shows the structure of a typical withdrawal experiment. 
We start with a portfolio of a given value, say $500,000. The money in the portfolio is invested in 
some assets.  The assets generate returns over a period of time, say a year. For example, if the 
assets generate a return of 5%, the portfolio is worth $525,000 before withdrawals. Then a 
withdrawal is made. (In reality, withdrawals have to be made more frequently, but for the purpose 
of modeling, we assume that withdrawals are made at the end of each year.) If the withdrawal was 
$50,000 for the year, the portfolio drops in value to $475,000. 
 
If the person now dies and the portfolio value is at least as large as the estate goal, the experiment 
ends as a success. If the person dies and the portfolio value is less than the estate goal, the 
experiment ends as a failure. If the person is still alive, the portfolio is rebalanced to the target asset 
allocation and the experiment continues. 
 
Each experiment is performed with a different sequence of asset returns. The result of each 
experiment (success or failure) is recorded. The percentage of experiments that end in failure 
measures the risk of the combination of withdrawal policy, investment strategy, and estate goal. 
The more independent experiments that are performed, the higher is the accuracy of the measured 
risk. 
 
Generating income while avoiding running out of money may not be the only criterion for selecting 
an investment strategy. The investor might also be interested in what sort of portfolio balance he or 
she can expect to have over time. A larger portfolio balance provides the opportunity to either 

                                                 
1  For example, Cooley, Hubbard, and Waltz [1998] and Jarrett and Stringfellow [2000] use historical return 

data, while Milevsky, Ho, and Robinson [1997], McCabe [1998], and Pye [2000] simulate asset class returns 
with a parametric models. 
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generate greater income, leave a larger estate, or a combination of both. The investor may also be 
concerned with the possibility of facing unplanned major expenses at some point in the future that 
would require dipping into the retirement income account. For all of these reasons, the investor 
might be concerned not only with the account balance at death, but at any point in time. 
 
Given the withdrawal rate and investment returns, we can depict the distribution of the account 
balance over time graphically. Figure 2 shows various percentiles of a simulated account balance for 
someone who starts with $500,000 at age 65 and withdraws $25,000 per year and follows a 
particular investment strategy. The figure shows that in this example, there is a 10 percent chance 
that the investor will run out of money by age 89 and a 25 percent chance that the investor will run 
out of money by age 97. Should the investor die at an earlier age or if the investments have better 
performance, he or she will leave the account balance as part of an estate. 
 
 
3. Literature Review 
 
Over the past decade, a number of papers have been published on the role of asset allocation and 
annuitization in retirement income management. These studies differ in approach and emphasis. 
 
Some studies focus on sustainable withdrawal rates for portfolios of stocks, bonds, and cash using 
historical asset class return data. For example, Cooley, Hubbard, and Waltz [1998] find the number 
of overlapping fixed length periods for which a given inflation-adjusted withdrawal rate would have 
been sustainable for a variety of period lengths, withdrawal rates, and asset mixes over the period 
1926-1995. Using similar historical data on asset class returns for the period 1926-1998 and a 
similar set of asset mixes, Jarrett and Stringfellow [2000] calculate the highest withdrawal rate that 
would have been sustainable in each and every overlapping fixed length period for each fixed period 
length that they examined. 
 
Several studies examine the relationship between the withdrawal rates and success probabilities for 
different asset mixes using a parametric model of real asset returns. McCabe [1998] uses the 
method described in Section 2 above for fixed time horizons with a lognormal model of asset class 
returns. Pye [2000] performs a similar exercise, but varies the withdrawal during the simulation 
based on account balance and remaining length of time remaining so as to increase the probability 
of not running out of money before the end of the period. 
 
Using a multivariate lognormal model of real asset class returns, Milevsky, Ho, and Roberson [1997] 
use Monte Carlo simulation to find the probability of running out of money before death for a given 
real withdrawal rate when the time of death is uncertain with asset mixes that vary from 0 to 100 
percent equity. To model the uncertainty of time of death, they first calculate the probability of 
running out of money for each year using the technique described in Section 2 above. They also 
calculate the probability of the investor dying in each year based on the person’s age and gender 
using a standard mortality table. They calculate the overall probability of running out of money as the 
weighted average of the probability of running out of money in each year, using the probability of 
death in each year as the weights. As discussed in Section 4 below, we use essentially the same 
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approaches as Milevsky, Ho, and Roberson to modeling asset class returns and handling the 
uncertainty of the year of death in our model. 
 
Monte Carlo simulation is inherently a computationally intensive method of approximation. So some 
researchers have developed analytical approximations for the probability of running (or not running) 
out of money under simplified assumptions. McCabe [1999] presents an approximation for the 
probability of never running out of money over an infinite horizon when withdrawing a constant 
amount, given the mean and standard deviation of the return on the invested portfolio. Milevsky and 
Robinson [2000] present a different solution to this problem that is exact if the returns on the 
invested portfolio follow a lognormal distribution. Milevsky and Robinson also present an analytical 
approximation for the probability of running out of money before death when the time of death is 
uncertain. However, the numerical analysis that is required to carry out calculations may be 
computationally intensive. 
 
A number of papers present formal solutions to optimization problems in which the investor selects 
an asset mix (and in some cases a level of annuitization) so as to maximize either an expected utility 
function or the probability of not running out of money before death. For example, Young [2004] 
derives the optimal allocation between a risk-free and a risky asset for an investor who needs a 
constant real level of income, has a constant probability of death, and wants to minimize the 
probability of outliving wealth. In Young’s model, the optimal proportion for the risky asset is a 
decreasing function of wealth, and hence changes over time. 
 
Milevsky, Moore, and Young [2004] introduce a constant dollar single premium immediate annuity 
into Young’s model. In their model, due to the binary nature of the investor’s goal, the optimal 
solution is to do no annuitization until the investor can generate the desired level of income entirely 
with annuities. At that point, the investor sells off all assets and purchases the annuity. 
 
In an expected utility model, typically the level of consumption is treated as variable rather than as a 
fixed income level. Hence, papers such as Milevsky and Young [2003] examine the optimal strategy 
for consumption as well as for annuitization and asset allocation. 
 
One of Milevsky and Young’s findings is that if investors can annuitize a fraction of wealth at distinct 
points in time, they will initially annuitize a lump-sum and then keep buying annuities in order to 
keep the ratio of annuities held to non-annuitized wealth at least as great as an optimal fixed ratio. 
This result is in sharp contrast to the optimal level of annuitization being all or nothing as it is in 
Milevsky, Moore, and Young’s model. 
 
Chen and Milevsky [2003] present an expected utility maximizing model in which investors allocate 
their wealth to conventional equities, conventional fixed income, fixed annuities, and an equity-
based variable annuity. However, rather than using a multi-period model of investing and 
consumption, they use a single period model. In the single future period, the investor is either alive 
or dead. In the living state, all four types of assets have a payoff. In the dead state, only the non-
annuity assets have a payoff. So the optimal allocation between annuity and non-annuity assets 
depends on the strength of the estate motive. Since it is a single period model, it does not address 
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the generation of income over time. However, the authors indicate that they will present a multi-
period in a future paper that presumably will address income generation. 
 
In all of the papers discussed above, the fixed annuity pays a constant real amount. To our 
knowledge, the existing literature does not address the fact that most fixed annuities have constant 
nominal payouts rather than real payouts. The model presented in this paper may be the first to 
address the issue of using nominal fixed annuities as part of a strategy to generate a constant real 
level of income. 
 
 
4. A Model Without Annuities 
 
We assume that all non-annuitized assets are invested in diversified portfolios of stocks, bonds, and 
cash. We model the real returns on these three broad asset classes as following a multivariate 
lognormal distribution. Our assumptions on expected returns, standard deviations, and correlations 
are based on Morningstar Associates’ model of real asset class returns. Figure 3 shows the 
expected real compound returns and standard deviations implied by this model. 
 
Morningstar Associates has a set of asset allocation policy mixes that vary from 0 to 98 percent 
stocks as shown in Figure 4. We select 21 of these asset mixes for our drawdown analysis; namely 
those with stock allocations of 0, 5, 10, …90, 94, and 98 percent. Figure 3 shows the implied 
expected real compound annual returns and standard deviations on these 21 asset mixes along with 
these parameters for the full set of policy asset mixes. As this figure shows, the selected mixes 
cover a full range of points along of risk-return spectrum. 
 
We assume that the investor withdraws a constant real dollar amount from the invested assets 
each year. If there is inflation, the nominal value of the withdrawn amount rises in lockstep with the 
price index. Note that since we model both asset class returns and withdrawal rates in real terms, 
we do not need an explicit model of inflation when there are no annuities. (In next section, when we 
introduce annuities that pay a fixed nominal amount, we introduce explicit models of inflation.) 
 
We perform 1,000 Monte Carlo experiments. For each experiment at each horizon, we find the 
highest withdrawal rate that would leave the investor with a balance of zero. 2 At each horizon, we 
sort these withdrawal rates across the experiments to find the relationship between withdrawal 
rate and success probability at the horizon in question. For example, if at the 20-year horizon, the 
10th percentile of withdrawal rates were 5.8 percent of the initial balance, we would conclude that 
the probability of not running out of money in 20 years is least 90 percent if the withdrawal rate 
were no more than 5.8 percent of initial wealth. The uneven curve in Figure 5 shows the relationship 
between the withdrawal rate and the success probability at the 20-year horizon for the 40 percent 
stock asset mix that we obtain by this method.3 
                                                 
2  In a similar fashion, Jarrett and Stringfellow [2000] calculate sustainable withdrawal rates for overlapping 

historical periods. 
 

3  In a similar fashion, McCabe [1998, 1999] presents results using graphs of functions that relate the 
withdrawal rate to the probability of success. 
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In theory, the relationship between the withdrawal rate and the success probability at each horizon 
should be a smooth curve. The unevenness of the relationship derived from the Monte Carlo 
simulation is due to approximation error inherent in the Monte Carlo method. Since the analysis that 
we do below requires smooth functional relationships between the withdrawal rate and the success 
probability, at each horizon, we use a smooth curve through selected points to represent the entire 
relationship. As illustrated in Figure 5, the smooth curves that we form are very close to the uneven 
curves that we derive them from. 
 
Since the year of death is uncertain, we take a weighted average of the success probabilities at the 
various horizons (as determined by the smoothed functions) as the overall success probability for a 
given withdrawal rate. The weight for each horizon is our estimate of the probability that the 
investor will die in that particular year. We derive our death-year probability estimates from the 
mortality rates published by the Society of Actuaries.4 Figure 6 presents these gender specific 
mortality rates. 
 
For our example of retirement income management, we use a 65-year old male who has just 
retired. Using the mortality rates for males shown in Figure 6, we derive the death-year probabilities 
for a 65-year old male shown in Figure 7. From these probabilities, we find that while the life 
expectancy of this person is 84 years, there is nearly a 50 percent probability that he will live 
beyond his life expectancy. This is why we think that it is important to use a full probabilistic model 
of the horizon rather than focusing just on the life expectancy when accessing retirement income 
strategies. 
 
The weighted-average success probability associated with each withdrawal rate defines a functional 
relationship between the withdrawal rate and the overall success probability. We find the 
withdrawal rates associated with a selected set of probabilities and fit a smooth curve through 
resulting withdrawal rate/success probability pairs. To see how the choice of asset mix affects the 
resulting relationship, we repeat these calculations for each of our selected asset mixes. 
 
Figure 8 shows the resulting relationships between withdrawal rates and success probabilities for 
each of the 21 asset mixes that we selected. The right edge of the resulting figure defines an 
efficient frontier between withdrawal rates and success probabilities, assuming that the investor 
would select the asset mix to maximize the success probability. Figure 9 shows the resulting equity 
allocations. Note that the equity allocation increases as the withdrawal rate increases and the 
success probability falls. 
 
Figure 8 shows that in this example, to keep the success probability in the 90-95 percent range; the 
withdrawal rate should not exceed 5 percent of the initial portfolio value. At this withdrawal rate, 
the highest success probability rate is 92.6 percent. Figure 9 shows that this occurs at the asset 
mix with an equity allocation of 40 percent. 
 

                                                 
4  See Johansen [1998]. 
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5. Modeling Inflation 
 
Since the annuity pays a fixed nominal amount each year, we need a model of the annual inflation 
rate to express these payments in real terms. To capture the uncertainty of inflation, the inflation 
model should generate time series of annual inflation rates that differ between experiments. 
 
Annual data on U.S. inflation rates exhibits serial correlation. To explore the impact that the serial 
correlation of inflation might have on the model, we use three alternative models of the annual 
inflation rate. Let  
 
πt = the continuous annual inflation rate for year t 
πM = the continuous long-term annual inflation rate 
 
For our first model, we assume that the inflation rate is constant: 
 
 πt = πM 
 
For our second model, we assume that there is first order serial correlation in πt: 
 
 πt = 0.1145πM + 0.8855πt-1 + 0.0128zt 
 
where zt is serially independent white noise that follows a standard normal distribution. We 
estimated the coefficients on πt-1 and zt using historical inflation data for the period 1978-2003.5 The 
coefficient on πM is one minus the coefficient on πt-1 so that πt will tend towards πM. We also 
estimated the correlation of zt with each of the real returns on the asset classes using historical data 
over the same period.  
 
For our third model, we assume that there is second order serial correlation in πt: 
 
 πt = 0.2222πM + 1.3876πt-1 – 0.6098πt-2 + 0.0086zt 
 
We estimated the coefficients on πt-1, πt-2, and zt using the same historical data as we did for the 
one-lag model. The coefficient on πM is one minus the sum of coefficients on πt-1 and πt-2 so that πt 
will tend towards πM. We also estimated the correlation of zt with each of the real returns on the 
asset classes using historical data over the same period. 
 
In our examples, we assume an initial inflation rate of 2.5 percent per year. We also assume that 
the autoregressive process causes the annual inflation rate to mean revert to 2.5 percent. Hence 
we set π-1, π0, and πM all to ln(1.025) in all of the models. 
 

                                                 
5  The monthly inflation rates that Morningstar Associates uses to represent inflation over the period 1/78-12/03, 

linked into calendar years. The underlying measure of inflation is the rate of change of the seasonally adjusted 
Consumer Price Index published by the Bureau of Labor Statistics. 
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To each of the 1,000 experiments that we ran in Section 4, we add simulated values of zt that are 
correlated with the real returns on the asset classes for the one-lag and two-lag models, the 
correlation coefficients depending on the choice of the inflation model. Under each inflation model, 
we generate a time series of values of πt for each experiment. We compound the inflation rates to 
generate a time series for the price index in each experiment. We do this by setting the price index 
in year 0, P0, to 1 and then calculating the price index in each year t, Pt as follows: 
 
 Pt = Pt-1exp(πt) 
 
The higher the level of the price index, the lower will be the value of the annuity to the investor. To 
see the potential impact that each inflation model might have on the income generation model, we 
calculate the average level of the price index across the 1,000 simulation experiments for each 
future year under each model. Figure 10 presents the results. As the figure shows, constant inflation 
generates the lowest values for the price index, the two-lag model generates slightly higher values, 
and the one-lag model generates significantly higher values. 
 
The models have different price index averages because they differ in inflation volatility. The 
mathematics of compounding is such that the more volatile a rate-of-change series is, the greater 
the compound value, all other things being equal. By definition, the constant inflation model has no 
volatility; hence it produces the lowest average. 
 
The other two inflation models produce volatile inflation rates. However, they do so in different 
manners. To see the difference between the two models, we calculate their autocorrelation 
functions. Figure 11 presents the results. As the figure shows, the one-lag model produces long 
monotonic trends while the two-lag model produces shorter cyclical trends. The longer trends of the 
one-lag model result in inflation rates that have greater variation around the mean than those in the 
two-lag model. 
 
To see the differences in the volatilities between the two models, we calculate their respective 
forecast volatilities. Figure 12 presents the results. This figure shows that forecast the volatility of 
the two-lag model is lower than that of the one-lag model at all horizons and significantly so within 
ten years. Hence, the simulated inflation rates generated by the one-lag model are more volatile 
than those generated by the two-lag model. 
 
 
6. Adding Annuities to the Model 
 
To explore the potential role of fixed annuities in retirement income management, we modify our 
model by allowing the investor to allocate a portion of initial wealth to a single premium immediate 
annuity that pays a fixed nominal amount each year until death and has no beneficiaries. For 
simplicity, we only allow the annuitization decision to be made at the beginning of the retirement 
period. As with almost all actual annuity contracts, the decision to annuitize is irreversible. 
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Fixed annuity prices are based on mortality rates and hence on age and gender. In our example of a 
65-year old male, we assume that $7.50 is received each year of life for every $100 paid at 
retirement. 
 
Under each of our three inflation models, we calculate values of the price index from the simulated 
inflation rates in each experiment and divide the resulting simulated price index values into the 
nominal annual annuity payout to find the real annuity payout. Thus, while the nominal annuity 
payout remains constant, the real annuity payout varies across time and under our second and third 
inflation models, across experiments as well. Since the long-term inflation rate is positive, the real 
annuity payout tends to decline over time. 
 
To see the effect on the trade-off between real income level and success probability when fixed 
nominal annuities are available, we again do a Monte Carlo simulation for a 65-year old male. We 
assume that this person starts with a balance of $500,000 and seeks to generate a constant level of 
income per year in real terms by dividing the initial balance between single premium immediate 
annuities that yield 7.5 percent per year on the initial purchase and a portfolio of risky investments 
assets. In years in which the annuity payments fall short of the desired income level, the investor 
withdraws money from the invested assets to make up the shortfall. In years in which the annuity 
payments exceed the desired income level, the investor adds the excess to the pool of invested 
assets. At the end of each year, after either withdrawing or adding funds, the investor rebalances 
the invested assets back to a fixed asset mix. 
 
We use 20 levels of annuitization (0, 5, 10, …, 95 percent of initial wealth) and our 21 selected 
asset mixes to form 420 combinations of annuitization and equity allocation. For each combination, 
we find the relationship between the income level (expressed as a percentage of initial wealth) and 
the success probability using the same technique that we use for the model without annuities. For 
each income level, we find the combination of annuitization and asset mix that provides the highest 
success probability. We repeat the entire exercise using each of the three inflation models. 
 
Figure 13 illustrates that under the one-lag inflation model, for the 5 percent income level, using 70 
percent of the initial balance to purchase annuities and investing the remaining 30 percent of the 
initial balance in a portfolio that is 70 percent equity provides the highest success probability. Figure 
14 presents the resulting trade-offs between income levels and maximum success probabilities 
without annuities, and with annuities under each of the three inflation models. 
 
As Figure 14 illustrates, the improvement in success probability depends largely on the choice of the 
inflation model. Under all three models in this example, the largest improvement occurs when the 
target income level is about 5 percent of initial wealth. The following table summaries the results for 
this real income target: 
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Model No 
Annuities 

Constant 
Inflation 

One-Lag 
Inflation 

Two-Lag 
Inflation 

Annuitization 0% 95% 70% 85% 
Equity Allocation of Non-
Annuitized Assets 

40% 30% 70% 70% 

Success Probability 92.56% 99.52% 94.66% 97.32% 
 
These results are consistent with our earlier remark that inflation models that result in lower values 
of the price index will make annuities more beneficial for the investor. The most striking result is that 
under the constant inflation model, the real level of income can be almost fully guaranteed using a 
nominal annuity. This is because in the early years, when the real level of income generated by the 
annuity exceeds the target, the excess income is added to the invested portfolio. In later years, 
when the real income from the annuity falls short of the target, the investor makes up the gap by 
making withdrawals from the invested portfolio.6 
 
In fact, if the real income goal is not too high and inflation is perfectly forecastable, it is possible to 
completely eliminate longevity risk using annuities. Initially, the investor purchases enough annuities 
to both meet the first year’s income goal and to provide the funds for future annuity purchases that 
will be needed to maintain the real level of income. Subsequently, in each year, the investor spends 
the inflation-adjusted income goal and uses the excess to buy additional annuities. All other things 
being equal, the annuity price should fall as the investor ages, making this strategy more economical 
over time. Any funds not needed for annuities can be invested in conventional assets to build an 
estate. In general, it should be possible to create a dynamic strategy of annuitization and 
conventional assets for retirement income management and estate planning using nominal annuities 
when inflation is uncertain; but this is a topic for future research. 
 
Annuitization and asset allocation decisions impact financial outcomes in addition to the probability 
of not running out of money before death. In many cases, the annuitization decision is largely one of 
securing a level of retirement income versus maintaining control over one’s assets, especially for the 
purpose of leaving an estate. To illustrate this trade-off, we repeat the Monte Carlo simulation with 
the one-lag inflation model for the 65-year male who has access to a fixed nominal annuity that 
yields 7.5 percent. For each of the 420 combinations of annuitization and equity allocation, we 
calculate the probability of failure (i.e., running out of funds before death) and median estate value.7 
Figure 15 presents the resulting combinations of probability of failure and median estate value. 
 
The left edge of the cluster of points in Figure 15 traces out an “efficient frontier” of probability of 
failure versus median estate value. In Figure 16, we plot just the points on the most efficient points, 

                                                 
6  To actually implement this strategy, the investor would have to use a taxable investment account. The model 

presented here ignores taxes. 
 

7  The probability of failure is simply 100 percent minus the success probability. We plot the probability of failure 
rather than the success probability in Figures 13 and 14 to present the trade-offs between risk and reward in 
the usual manner. 
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with and without annuities.8 The gap between the two sets of points shows how much annuities 
can improve the trade-off between risk and reward in this setting. 
 
For a given combination of annuity allocation, θ, and equity allocation of non-annuitized assets, x, 
the effective allocation to stocks is (1-θ)x and the effective allocation to conventional fixed income 
is (1-θ)(1-x). In Figure 17, we plot the effective allocations to annuities, conventional fixed income, 
and stocks implied by the combinations of θ and x depicted in Figure 16 that make up the efficient 
frontier with annuities. Figure 17 is a simplex diagram for allocations to three asset classes. In this 
diagram, a 100 percent allocation to an asset class is represented by a point at the corner of the 
triangle labeled with the name of the asset class. A point on the side of the triangle represents an 
allocation that has no allocation to the asset class named on the opposite corner, but is entirely 
made up of the asset classes named at the corners that are the endpoints of the side in question. In 
general, any point on the triangle represents an allocation to the three asset classes; the closer the 
point to a particular corner, the higher the allocation to the asset class the corner represents. 
 
The pattern of points in Figure 17 suggests that the efficient frontier consists of three segments: 
 

• High stock allocations with no allocation to annuities 
• A segment from the zero annuity segment to the point of minimum probability of failure 
• A segment from the point of minimum probability of failure to 100 percent annuities9 

 
Note that along the last segment, as with any straight line on the triangle in Figure 17 that goes 
through the 100 percent annuities point, x is a constant. 
 
The adjacent line segments shown in Figure 17 are drawn as described above. To construct these 
line segments, we need to identify two combinations of θ and x: 
 

• The least risky efficient asset mix that has no allocation to annuities 
• The combination that minimizes the probability of failure 

 
To see if the adjacent line segments in Figure 17 provide a good approximation of the allocations of 
the efficient frontier, we map 99 points along the segments, equally spaced by stock allocation, into 
combinations of θ and x (x = stock allocation / (1- θ)) and calculate the probability of failure and 
median estate value for each combination. The results are shown as the continuous curve in Figure 
16. As the figure shows, the approximated efficient frontier falls almost exactly on the efficient 
points. 
 
In Figure 18, we show the effective asset mixes between stocks, bonds, cash, and annuities for the 
99 combinations of annuitization and equity allocation depicted by the curve in Figure 16 and by the 

                                                 
8  Strictly speaking, the points below where probability of failure is minimized are not efficient. However, we 

include them in our “efficient frontier” here because the lower negatively sloped segment is often shown in 
efficient frontier diagrams drawn in the standard deviation-expected value space of traditional portfolio theory. 
 

9  See previous note. 
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adjacent line segments in Figure 17. We generated this chart by applying the stock, bond, cash 
mixes shown in Figure 4 to the non-annuitized portion of the 99 portfolios. 
 
 
7. Extensions to the Model 
 
Our model can be readily extended in a number of ways to more realistically reflect the actual 
circumstances of retirees. First of all, retirees typically have sources of income besides their 
retirement nest eggs. These additional income sources may include Social Security benefits, 
payouts from defined benefit plans, income from part-time jobs held during retirement, and income 
generated by real estate investments. These other sources of income can be combined with annuity 
payouts and withdrawals from invested assets to create a constant level of real income. Other cash 
flows, positive or negative, that may take place during retirement can also be incorporated into the 
analysis. 
 
The model can be extended to the case of two persons retiring together, using a single pool of 
money to generate income, as is typically the case with retired married couples. In this version of 
the model, we model each person’s probability of death each year based on age and gender and 
assume that the death of each person is an independent event. Hence in each year, there are four 
scenarios, each with an associated probability; namely, 
 

• Both people remain alive 
• The first person dies, survived by the second person 
• The second person dies, survived by the first person 
• Both people die 

 
We assume that when one person survives the other, a fixed fraction of the joint income goal 
becomes the income goal of the survivor. Once both people die, any remaining balance in the 
invested portfolio becomes the estate. 
 
The single premium immediate annuity used in the single person model is replaced by a single 
premium immediate joint-and-survivor annuity in the two-person model. In a joint-and-survivor 
annuity, the payout depends on which of the members of a couple are alive, the first person only, 
the second person only, or both. Payouts stop once both people die. 
 
In the analysis presented here, we focus on the real income level, the probability of not running out 
of money, and estate size. Another factor that we can consider is the short-term risk of the 
investment portfolio. All other things being equal, an investor may want to avoid taking on short-
term risk in the invested portfolio. We can incorporate such short-term risk aversion directly into our 
model by including a short-term risk measure, such as portfolio volatility, directly into the objective 
function when selecting the asset mix and the level of annuitization. 
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8. Summary 
 
During retirement, both market and longevity risk must be managed by making choices regarding 
income generation, annuitization, investments, and estate planning. Simulation models can be 
useful to investors planning retirement income by portraying the trade-offs between income level, 
portfolio volatility, success probability, and estate size that are available through different 
combinations of asset mixes and annuities. In this paper, we considered what trade-offs are 
available through a set of asset mixes and single premium immediate annuities. 
 
When there are no annuities in the model, there is no need to model inflation since all variables are 
in real terms. However, since fixed annuities pay a constant nominal amount, we need to model 
inflation to model their real payouts. We found that the role that annuities play in an optimized 
strategy depends largely on how we choose to model inflation. 
 
For a given real income goal, there is an efficient trade-off between failure probability and median 
estate value. Points along this efficient frontier have different combinations of equities, conventional 
fixed income, and fixed annuities that we can depict graphically. 
 
The model can be extended to consider additional income sources and other fixed cash flows, two-
person mortality, and short-term risk aversion. With these extensions, the model can be used as a 
guide to help retired investors make informed decisions on income generation, annuitization, asset 
allocation, and estate planning. 
 
Our analysis focused on strategies in which the investor makes a one-time annuitization decision 
and selects a single asset mix for non-annuitized assets. Further research needs to be done to 
explore dynamic annuitization and asset allocation strategies during retirement in the presence of 
uncertain inflation. 
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Figure 1: Simulation Using Withdrawal Experiments
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Figure 2: Percentiles of Simulated Balances at Various Ages
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Figure 3: Real Return Assumptions on Asset Classes and Mixes
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Figure 4: Asset Mixes
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Figure 5: Withdrawal Rate vs. Success Probability at
20-Year Horizon
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Figure 6: Mortality Rates
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Figure 7: Death Probabilities for a 65-Year Old Male
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Figure 8: Withdrawal Rate vs. Success Probability:
21 Asset Mixes
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Figure 9: Equity Allocations of Mixes with Highest Success
Probabilities
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Figure 10: Average Price Indexes with Alternative Inflation
Models
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Figure 11: Autocorrelation Functions of Alternative Inflation
Models
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Figure 12: Forecast Volatilities for Alternative Inflation Models
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Figure 13: Success Probabilities for 5% Income Level*
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Figure 14: Highest Success Probabilities with & without
Annuities, & with Alternative Inflation Models
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Figure 15: Failure Probability vs. Median Estate Value
(5% Income Level & One-Lag Inflation Model)
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Figure 16: Failure Probability vs. Median Estate
Efficient Frontier: With & Without Annuities
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Figure 17: Effective Asset Class / Annuity Combinations
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Figure 18: Effective Asset Class / Annuity Mixes
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